from __future__ import annotations from .core import Encoding from .registry import get_encoding # TODO: these will likely be replaced by an API endpoint MODEL_PREFIX_TO_ENCODING: dict[str, str] = { # chat "gpt-3.5-turbo-": "cl100k_base" # e.g, gpt-3.5-turbo-0301, -0401, etc. } MODEL_TO_ENCODING: dict[str, str] = { # chat "gpt-3.5-turbo": "cl100k_base", # text "text-davinci-003": "p50k_base", "text-davinci-002": "p50k_base", "text-davinci-001": "r50k_base", "text-curie-001": "r50k_base", "text-babbage-001": "r50k_base", "text-ada-001": "r50k_base", "davinci": "r50k_base", "curie": "r50k_base", "babbage": "r50k_base", "ada": "r50k_base", # code "code-davinci-002": "p50k_base", "code-davinci-001": "p50k_base", "code-cushman-002": "p50k_base", "code-cushman-001": "p50k_base", "davinci-codex": "p50k_base", "cushman-codex": "p50k_base", # edit "text-davinci-edit-001": "p50k_edit", "code-davinci-edit-001": "p50k_edit", # embeddings "text-embedding-ada-002": "cl100k_base", # old embeddings "text-similarity-davinci-001": "r50k_base", "text-similarity-curie-001": "r50k_base", "text-similarity-babbage-001": "r50k_base", "text-similarity-ada-001": "r50k_base", "text-search-davinci-doc-001": "r50k_base", "text-search-curie-doc-001": "r50k_base", "text-search-babbage-doc-001": "r50k_base", "text-search-ada-doc-001": "r50k_base", "code-search-babbage-code-001": "r50k_base", "code-search-ada-code-001": "r50k_base", # open source "gpt2": "gpt2", } def encoding_for_model(model_name: str) -> Encoding: """Returns the encoding used by a model.""" encoding_name = None if model_name in MODEL_TO_ENCODING: encoding_name = MODEL_TO_ENCODING[model_name] else: # Check if the model matches a known prefix # Prefix matching avoids needing library updates for every model version release # Note that this can match on non-existent models (e.g., gpt-3.5-turbo-FAKE) for model_prefix, model_encoding_name in MODEL_PREFIX_TO_ENCODING.items(): if model_name.startswith(model_prefix): return get_encoding(model_encoding_name) if encoding_name is None: raise KeyError( f"Could not automatically map {model_name} to a tokeniser. " "Please use `tiktok.get_encoding` to explicitly get the tokeniser you expect." ) from None return get_encoding(encoding_name)