Files
ytts/venv/lib/python3.11/site-packages/triton/ops/matmul_perf_model.py
2025-04-02 21:44:17 -07:00

162 lines
6.4 KiB
Python

import heapq
import torch
import triton
import triton._C.libtriton.triton as _triton
from triton.testing import get_dram_gbps, get_max_simd_tflops, get_max_tensorcore_tflops
def get_tensorcore_tflops(backend, device, num_ctas, num_warps, dtype):
''' return compute throughput in TOPS '''
total_warps = num_ctas * min(num_warps, 4)
triton.compiler.init_cuda_utils()
num_subcores = triton.compiler.cuda_utils.get_device_properties(device)["multiprocessor_count"] * 4 # on recent GPUs
tflops = min(num_subcores, total_warps) / num_subcores * get_max_tensorcore_tflops(dtype, backend, device)
return tflops
def get_simd_tflops(backend, device, num_ctas, num_warps, dtype):
''' return compute throughput in TOPS '''
total_warps = num_ctas * min(num_warps, 4)
num_subcores = triton.compiler.cuda_utils.get_device_properties(device)["multiprocessor_count"] * 4 # on recent GPUs
tflops = min(num_subcores, total_warps) / num_subcores * get_max_simd_tflops(dtype, backend, device)
return tflops
def get_tflops(backend, device, num_ctas, num_warps, dtype):
capability = torch.cuda.get_device_capability(device)
if capability[0] < 8 and dtype == torch.float32:
return get_simd_tflops(backend, device, num_ctas, num_warps, dtype)
return get_tensorcore_tflops(backend, device, num_ctas, num_warps, dtype)
def estimate_matmul_time(
# backend, device,
num_warps, num_stages,
A, B, C,
M, N, K,
BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K,
debug=False, **kwargs
):
''' return estimated running time in ms
= max(compute, loading) + store '''
backend = _triton.runtime.backend.CUDA
device = torch.cuda.current_device()
dtype = A.dtype
dtsize = A.element_size()
num_cta_m = triton.cdiv(M, BLOCK_M)
num_cta_n = triton.cdiv(N, BLOCK_N)
num_cta_k = SPLIT_K
num_ctas = num_cta_m * num_cta_n * num_cta_k
# If the input is smaller than the block size
M, N = max(M, BLOCK_M), max(N, BLOCK_N)
# time to compute
total_ops = 2 * M * N * K / (1024 * 1024 * 1024) # GOPS
tput = get_tflops(backend, device, num_ctas, num_warps, dtype)
compute_ms = total_ops / tput
# time to load data
num_sm = triton.compiler.cuda_utils.get_device_properties(device)["multiprocessor_count"]
active_cta_ratio = min(1, num_ctas / num_sm)
active_cta_ratio_bw1 = min(1, num_ctas / 32) # 32 active ctas are enough to saturate
active_cta_ratio_bw2 = max(min(1, (num_ctas - 32) / (108 - 32)), 0) # 32-108, remaining 5%
dram_bw = get_dram_gbps(backend, device) * (active_cta_ratio_bw1 * 0.95 + active_cta_ratio_bw2 * 0.05) # in GB/s
l2_bw = dram_bw * 4 # rough estimation (should be 4.7 for A100?)
# assume 80% of (following) loads are in L2 cache
load_a_dram = M * K * dtsize * (1 + 0.2 * (num_cta_n - 1))
load_a_l2 = M * K * dtsize * 0.8 * (num_cta_n - 1)
load_b_dram = N * K * dtsize * (1 + 0.2 * (num_cta_m - 1))
load_b_l2 = N * K * dtsize * 0.8 * (num_cta_m - 1)
# total
total_dram = (load_a_dram + load_b_dram) / (1024 * 1024) # MB
total_l2 = (load_a_l2 + load_b_l2) / (1024 * 1024)
# loading time in ms
load_ms = total_dram / dram_bw + total_l2 / l2_bw
# estimate storing time
store_bw = dram_bw * 0.6 # :o
store_c_dram = M * N * dtsize * SPLIT_K / (1024 * 1024) # MB
if SPLIT_K == 1:
store_ms = store_c_dram / store_bw
else:
reduce_bw = store_bw
store_ms = store_c_dram / reduce_bw
# c.zero_()
zero_ms = M * N * 2 / (1024 * 1024) / store_bw
store_ms += zero_ms
total_time_ms = max(compute_ms, load_ms) + store_ms
if debug:
print(f'Total time: {total_time_ms}ms, compute time: {compute_ms}ms, '
f'loading time: {load_ms}ms, store time: {store_ms}ms, '
f'Activate CTAs: {active_cta_ratio*100}%')
return total_time_ms
def early_config_prune(configs, named_args):
device = torch.cuda.current_device()
capability = torch.cuda.get_device_capability()
# BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, num_warps, num_stages
dtsize = named_args['A'].element_size()
dtype = named_args['A'].dtype
# 1. make sure we have enough smem
pruned_configs = []
for config in configs:
kw = config.kwargs
BLOCK_M, BLOCK_N, BLOCK_K, num_stages = \
kw['BLOCK_M'], kw['BLOCK_N'], kw['BLOCK_K'], config.num_stages
# TODO: move to `cuda_utils` submodule
triton.compiler.init_cuda_utils()
max_shared_memory = triton.compiler.cuda_utils.get_device_properties(device)["max_shared_mem"]
required_shared_memory = (BLOCK_M + BLOCK_N) * BLOCK_K * num_stages * dtsize
if required_shared_memory <= max_shared_memory:
pruned_configs.append(config)
configs = pruned_configs
# Some dtypes do not allow atomic_add
if dtype not in [torch.float16, torch.float32]:
configs = [config for config in configs if config.kwargs['SPLIT_K'] == 1]
# group configs by (BLOCK_M,_N,_K, SPLIT_K, num_warps)
configs_map = {}
for config in configs:
kw = config.kwargs
BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, num_warps, num_stages = \
kw['BLOCK_M'], kw['BLOCK_N'], kw['BLOCK_K'], kw['SPLIT_K'], config.num_warps, config.num_stages
key = (BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, num_warps)
if key in configs_map:
configs_map[key].append((config, num_stages))
else:
configs_map[key] = [(config, num_stages)]
pruned_configs = []
for k, v in configs_map.items():
BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, num_warps = k
if capability[0] >= 8:
# compute cycles (only works for ampere GPUs)
mmas = BLOCK_M * BLOCK_N * BLOCK_K / (16 * 8 * 16)
mma_cycles = mmas / min(4, num_warps) * 8
ldgsts_latency = 300 # Does this matter?
optimal_num_stages = ldgsts_latency / mma_cycles
# nearest stages, prefer large #stages
nearest = heapq.nsmallest(2, v, key=lambda x: 10 + abs(x[1] - optimal_num_stages)
if (x[1] - optimal_num_stages) < 0 else x[1] - optimal_num_stages)
for n in nearest:
pruned_configs.append(n[0])
else: # Volta & Turing only supports num_stages <= 2
random_config = v[0][0]
random_config.num_stages = 2
pruned_configs.append(random_config)
return pruned_configs