340 lines
11 KiB
Python
340 lines
11 KiB
Python
from typing import NamedTuple, Callable, Any, Tuple, List, Dict, Type, cast, Optional, TypeVar, overload, Union
|
|
import functools
|
|
from collections import namedtuple, OrderedDict
|
|
from dataclasses import dataclass
|
|
|
|
|
|
T = TypeVar('T')
|
|
S = TypeVar('S')
|
|
U = TypeVar('U')
|
|
R = TypeVar('R')
|
|
|
|
"""
|
|
Contains utility functions for working with nested python data structures.
|
|
|
|
A *pytree* is Python nested data structure. It is a tree in the sense that
|
|
nodes are Python collections (e.g., list, tuple, dict) and the leaves are
|
|
Python values. Furthermore, a pytree should not contain reference cycles.
|
|
|
|
pytrees are useful for working with nested collections of Tensors. For example,
|
|
one can use `tree_map` to map a function over all Tensors inside some nested
|
|
collection of Tensors and `tree_unflatten` to get a flat list of all Tensors
|
|
inside some nested collection. pytrees are helpful for implementing nested
|
|
collection support for PyTorch APIs.
|
|
|
|
This pytree implementation is not very performant due to Python overhead
|
|
To improve the performance we can move parts of the implementation to C++.
|
|
"""
|
|
|
|
# A NodeDef holds two callables:
|
|
# - flatten_fn should take the collection and return a flat list of values.
|
|
# It can also return some context that is used in reconstructing the
|
|
# collection.
|
|
# - unflatten_fn should take a flat list of values and some context
|
|
# (returned by flatten_fn). It returns the collection by reconstructing
|
|
# it from the list and the context.
|
|
Context = Any
|
|
PyTree = Any
|
|
FlattenFunc = Callable[[PyTree], Tuple[List, Context]]
|
|
UnflattenFunc = Callable[[List, Context], PyTree]
|
|
|
|
class NodeDef(NamedTuple):
|
|
flatten_fn: FlattenFunc
|
|
unflatten_fn: UnflattenFunc
|
|
|
|
SUPPORTED_NODES: Dict[Type[Any], NodeDef] = {}
|
|
|
|
def _register_pytree_node(typ: Any, flatten_fn: FlattenFunc, unflatten_fn: UnflattenFunc) -> None:
|
|
SUPPORTED_NODES[typ] = NodeDef(flatten_fn, unflatten_fn)
|
|
|
|
def _dict_flatten(d: Dict[Any, Any]) -> Tuple[List[Any], Context]:
|
|
return list(d.values()), list(d.keys())
|
|
|
|
def _dict_unflatten(values: List[Any], context: Context) -> Dict[Any, Any]:
|
|
return {key: value for key, value in zip(context, values)}
|
|
|
|
def _list_flatten(d: List[Any]) -> Tuple[List[Any], Context]:
|
|
return d, None
|
|
|
|
def _list_unflatten(values: List[Any], context: Context) -> List[Any]:
|
|
return list(values)
|
|
|
|
def _tuple_flatten(d: Tuple[Any, ...]) -> Tuple[List[Any], Context]:
|
|
return list(d), None
|
|
|
|
def _tuple_unflatten(values: List[Any], context: Context) -> Tuple[Any, ...]:
|
|
return tuple(values)
|
|
|
|
def _namedtuple_flatten(d: NamedTuple) -> Tuple[List[Any], Context]:
|
|
return list(d), type(d)
|
|
|
|
def _namedtuple_unflatten(values: List[Any], context: Context) -> NamedTuple:
|
|
return cast(NamedTuple, context(*values))
|
|
|
|
def _odict_flatten(d: 'OrderedDict[Any, Any]') -> Tuple[List[Any], Context]:
|
|
return list(d.values()), list(d.keys())
|
|
|
|
def _odict_unflatten(values: List[Any], context: Context) -> 'OrderedDict[Any, Any]':
|
|
return OrderedDict((key, value) for key, value in zip(context, values))
|
|
|
|
|
|
_register_pytree_node(dict, _dict_flatten, _dict_unflatten)
|
|
_register_pytree_node(list, _list_flatten, _list_unflatten)
|
|
_register_pytree_node(tuple, _tuple_flatten, _tuple_unflatten)
|
|
_register_pytree_node(namedtuple, _namedtuple_flatten, _namedtuple_unflatten)
|
|
_register_pytree_node(OrderedDict, _odict_flatten, _odict_unflatten)
|
|
|
|
|
|
# h/t https://stackoverflow.com/questions/2166818/how-to-check-if-an-object-is-an-instance-of-a-namedtuple
|
|
def _is_namedtuple_instance(pytree: Any) -> bool:
|
|
typ = type(pytree)
|
|
bases = typ.__bases__
|
|
if len(bases) != 1 or bases[0] != tuple:
|
|
return False
|
|
fields = getattr(typ, '_fields', None)
|
|
if not isinstance(fields, tuple):
|
|
return False
|
|
return all(type(entry) == str for entry in fields)
|
|
|
|
def _get_node_type(pytree: Any) -> Any:
|
|
if _is_namedtuple_instance(pytree):
|
|
return namedtuple
|
|
return type(pytree)
|
|
|
|
# A leaf is defined as anything that is not a Node.
|
|
def _is_leaf(pytree: PyTree) -> bool:
|
|
return _get_node_type(pytree) not in SUPPORTED_NODES.keys()
|
|
|
|
|
|
# A TreeSpec represents the structure of a pytree. It holds:
|
|
# "type": the type of root Node of the pytree
|
|
# context: some context that is useful in unflattening the pytree
|
|
# children_specs: specs for each child of the root Node
|
|
# num_leaves: the number of leaves
|
|
@dataclass
|
|
class TreeSpec:
|
|
type: Any
|
|
context: Context
|
|
children_specs: List['TreeSpec']
|
|
|
|
def __post_init__(self) -> None:
|
|
self.num_leaves: int = sum([spec.num_leaves for spec in self.children_specs])
|
|
|
|
def __repr__(self, indent: int = 0) -> str:
|
|
repr_prefix: str = f'TreeSpec({self.type.__name__}, {self.context}, ['
|
|
children_specs_str: str = ''
|
|
if len(self.children_specs):
|
|
indent += len(repr_prefix)
|
|
children_specs_str += self.children_specs[0].__repr__(indent)
|
|
children_specs_str += ',' if len(self.children_specs) > 1 else ''
|
|
children_specs_str += ','.join(['\n' + ' ' * indent + child.__repr__(indent) for child in self.children_specs[1:]])
|
|
repr_suffix: str = f'{children_specs_str}])'
|
|
return repr_prefix + repr_suffix
|
|
|
|
|
|
class LeafSpec(TreeSpec):
|
|
def __init__(self) -> None:
|
|
super().__init__(None, None, [])
|
|
self.num_leaves = 1
|
|
|
|
def __repr__(self, indent: int = 0) -> str:
|
|
return '*'
|
|
|
|
def tree_flatten(pytree: PyTree) -> Tuple[List[Any], TreeSpec]:
|
|
"""Flattens a pytree into a list of values and a TreeSpec that can be used
|
|
to reconstruct the pytree.
|
|
"""
|
|
if _is_leaf(pytree):
|
|
return [pytree], LeafSpec()
|
|
|
|
node_type = _get_node_type(pytree)
|
|
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
|
|
child_pytrees, context = flatten_fn(pytree)
|
|
|
|
# Recursively flatten the children
|
|
result : List[Any] = []
|
|
children_specs : List['TreeSpec'] = []
|
|
for child in child_pytrees:
|
|
flat, child_spec = tree_flatten(child)
|
|
result += flat
|
|
children_specs.append(child_spec)
|
|
|
|
return result, TreeSpec(node_type, context, children_specs)
|
|
|
|
|
|
def tree_unflatten(values: List[Any], spec: TreeSpec) -> PyTree:
|
|
"""Given a list of values and a TreeSpec, builds a pytree.
|
|
This is the inverse operation of `tree_flatten`.
|
|
"""
|
|
if not isinstance(spec, TreeSpec):
|
|
raise ValueError(
|
|
f'tree_unflatten(values, spec): Expected `spec` to be instance of '
|
|
f'TreeSpec but got item of type {type(spec)}.')
|
|
if len(values) != spec.num_leaves:
|
|
raise ValueError(
|
|
f'tree_unflatten(values, spec): `values` has length {len(values)} '
|
|
f'but the spec refers to a pytree that holds {spec.num_leaves} '
|
|
f'items ({spec}).')
|
|
if isinstance(spec, LeafSpec):
|
|
return values[0]
|
|
|
|
unflatten_fn = SUPPORTED_NODES[spec.type].unflatten_fn
|
|
|
|
# Recursively unflatten the children
|
|
start = 0
|
|
end = 0
|
|
child_pytrees = []
|
|
for child_spec in spec.children_specs:
|
|
end += child_spec.num_leaves
|
|
child_pytrees.append(tree_unflatten(values[start:end], child_spec))
|
|
start = end
|
|
|
|
return unflatten_fn(child_pytrees, spec.context)
|
|
|
|
def tree_map(fn: Any, pytree: PyTree) -> PyTree:
|
|
flat_args, spec = tree_flatten(pytree)
|
|
return tree_unflatten([fn(i) for i in flat_args], spec)
|
|
|
|
Type2 = Tuple[Type[T], Type[S]]
|
|
Type3 = Tuple[Type[T], Type[S], Type[U]]
|
|
TypeAny = Union[Type[Any], Tuple[Type[Any], ...]]
|
|
|
|
Fn3 = Callable[[Union[T, S, U]], R]
|
|
Fn2 = Callable[[Union[T, S]], R]
|
|
Fn = Callable[[T], R]
|
|
FnAny = Callable[[Any], R]
|
|
|
|
MapOnlyFn = Callable[[T], Callable[[Any], Any]]
|
|
|
|
# These specializations help with type inference on the lambda passed to this
|
|
# function
|
|
@overload
|
|
def map_only(ty: Type2[T, S]) -> MapOnlyFn[Fn2[T, S, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def map_only(ty: Type[T]) -> MapOnlyFn[Fn[T, Any]]:
|
|
...
|
|
|
|
# This specialization is needed for the implementations below that call
|
|
@overload
|
|
def map_only(ty: TypeAny) -> MapOnlyFn[FnAny[Any]]:
|
|
...
|
|
|
|
def map_only(ty: TypeAny) -> MapOnlyFn[FnAny[Any]]:
|
|
"""
|
|
Suppose you are writing a tree_map over tensors, leaving everything
|
|
else unchanged. Ordinarily you would have to write:
|
|
|
|
def go(t):
|
|
if isinstance(t, Tensor):
|
|
return ...
|
|
else:
|
|
return t
|
|
|
|
With this function, you only need to write:
|
|
|
|
@map_only(Tensor)
|
|
def go(t):
|
|
return ...
|
|
|
|
You can also directly use 'tree_map_only'
|
|
"""
|
|
def deco(f: Callable[[T], Any]) -> Callable[[Any], Any]:
|
|
@functools.wraps(f)
|
|
def inner(x: T) -> Any:
|
|
if isinstance(x, ty):
|
|
return f(x)
|
|
else:
|
|
return x
|
|
return inner
|
|
return deco
|
|
|
|
@overload
|
|
def tree_map_only(ty: Type[T], fn: Fn[T, Any], pytree: PyTree) -> PyTree:
|
|
...
|
|
|
|
@overload
|
|
def tree_map_only(ty: Type2[T, S], fn: Fn2[T, S, Any], pytree: PyTree) -> PyTree:
|
|
...
|
|
|
|
@overload
|
|
def tree_map_only(ty: Type3[T, S, U], fn: Fn3[T, S, U, Any], pytree: PyTree) -> PyTree:
|
|
...
|
|
|
|
def tree_map_only(ty: TypeAny, fn: FnAny[Any], pytree: PyTree) -> PyTree:
|
|
return tree_map(map_only(ty)(fn), pytree)
|
|
|
|
def tree_all(pred: Callable[[Any], bool], pytree: PyTree) -> bool:
|
|
flat_args, _ = tree_flatten(pytree)
|
|
return all(map(pred, flat_args))
|
|
|
|
def tree_any(pred: Callable[[Any], bool], pytree: PyTree) -> bool:
|
|
flat_args, _ = tree_flatten(pytree)
|
|
return any(map(pred, flat_args))
|
|
|
|
@overload
|
|
def tree_all_only(ty: Type[T], pred: Fn[T, bool], pytree: PyTree) -> bool:
|
|
...
|
|
|
|
@overload
|
|
def tree_all_only(ty: Type2[T, S], pred: Fn2[T, S, bool], pytree: PyTree) -> bool:
|
|
...
|
|
|
|
@overload
|
|
def tree_all_only(ty: Type3[T, S, U], pred: Fn3[T, S, U, bool], pytree: PyTree) -> bool:
|
|
...
|
|
|
|
def tree_all_only(ty: TypeAny, pred: FnAny[bool], pytree: PyTree) -> bool:
|
|
flat_args, _ = tree_flatten(pytree)
|
|
return all(pred(x) for x in flat_args if isinstance(x, ty))
|
|
|
|
@overload
|
|
def tree_any_only(ty: Type[T], pred: Fn[T, bool], pytree: PyTree) -> bool:
|
|
...
|
|
|
|
@overload
|
|
def tree_any_only(ty: Type2[T, S], pred: Fn2[T, S, bool], pytree: PyTree) -> bool:
|
|
...
|
|
|
|
def tree_any_only(ty: TypeAny, pred: FnAny[bool], pytree: PyTree) -> bool:
|
|
flat_args, _ = tree_flatten(pytree)
|
|
return any(pred(x) for x in flat_args if isinstance(x, ty))
|
|
|
|
# Broadcasts a pytree to the provided TreeSpec and returns the flattened
|
|
# values. If this is not possible, then this function returns None.
|
|
#
|
|
# For example, given pytree=0 and spec=TreeSpec(list, None, [LeafSpec(), LeafSpec()]),
|
|
# would return [0, 0]. This is useful for part of the vmap implementation:
|
|
# a user can pass in vmap(fn, in_dims)(*inputs). `in_dims` should be
|
|
# broadcastable to the tree structure of `inputs` and we use
|
|
# _broadcast_to_and_flatten to check this.
|
|
def _broadcast_to_and_flatten(pytree: PyTree, spec: TreeSpec) -> Optional[List[Any]]:
|
|
assert isinstance(spec, TreeSpec)
|
|
|
|
if _is_leaf(pytree):
|
|
return [pytree] * spec.num_leaves
|
|
if isinstance(spec, LeafSpec):
|
|
return None
|
|
node_type = _get_node_type(pytree)
|
|
if node_type != spec.type:
|
|
return None
|
|
|
|
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
|
|
child_pytrees, ctx = flatten_fn(pytree)
|
|
|
|
# Check if the Node is different from the spec
|
|
if len(child_pytrees) != len(spec.children_specs) or ctx != spec.context:
|
|
return None
|
|
|
|
# Recursively flatten the children
|
|
result : List[Any] = []
|
|
for child, child_spec in zip(child_pytrees, spec.children_specs):
|
|
flat = _broadcast_to_and_flatten(child, child_spec)
|
|
if flat is not None:
|
|
result += flat
|
|
else:
|
|
return None
|
|
|
|
return result
|